3.422 \(\int \cot ^5(c+d x) (a+b \tan (c+d x)) \, dx\)

Optimal. Leaf size=75 \[ -\frac {a \cot ^4(c+d x)}{4 d}+\frac {a \cot ^2(c+d x)}{2 d}+\frac {a \log (\sin (c+d x))}{d}-\frac {b \cot ^3(c+d x)}{3 d}+\frac {b \cot (c+d x)}{d}+b x \]

[Out]

b*x+b*cot(d*x+c)/d+1/2*a*cot(d*x+c)^2/d-1/3*b*cot(d*x+c)^3/d-1/4*a*cot(d*x+c)^4/d+a*ln(sin(d*x+c))/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {3529, 3531, 3475} \[ -\frac {a \cot ^4(c+d x)}{4 d}+\frac {a \cot ^2(c+d x)}{2 d}+\frac {a \log (\sin (c+d x))}{d}-\frac {b \cot ^3(c+d x)}{3 d}+\frac {b \cot (c+d x)}{d}+b x \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^5*(a + b*Tan[c + d*x]),x]

[Out]

b*x + (b*Cot[c + d*x])/d + (a*Cot[c + d*x]^2)/(2*d) - (b*Cot[c + d*x]^3)/(3*d) - (a*Cot[c + d*x]^4)/(4*d) + (a
*Log[Sin[c + d*x]])/d

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rubi steps

\begin {align*} \int \cot ^5(c+d x) (a+b \tan (c+d x)) \, dx &=-\frac {a \cot ^4(c+d x)}{4 d}+\int \cot ^4(c+d x) (b-a \tan (c+d x)) \, dx\\ &=-\frac {b \cot ^3(c+d x)}{3 d}-\frac {a \cot ^4(c+d x)}{4 d}+\int \cot ^3(c+d x) (-a-b \tan (c+d x)) \, dx\\ &=\frac {a \cot ^2(c+d x)}{2 d}-\frac {b \cot ^3(c+d x)}{3 d}-\frac {a \cot ^4(c+d x)}{4 d}+\int \cot ^2(c+d x) (-b+a \tan (c+d x)) \, dx\\ &=\frac {b \cot (c+d x)}{d}+\frac {a \cot ^2(c+d x)}{2 d}-\frac {b \cot ^3(c+d x)}{3 d}-\frac {a \cot ^4(c+d x)}{4 d}+\int \cot (c+d x) (a+b \tan (c+d x)) \, dx\\ &=b x+\frac {b \cot (c+d x)}{d}+\frac {a \cot ^2(c+d x)}{2 d}-\frac {b \cot ^3(c+d x)}{3 d}-\frac {a \cot ^4(c+d x)}{4 d}+a \int \cot (c+d x) \, dx\\ &=b x+\frac {b \cot (c+d x)}{d}+\frac {a \cot ^2(c+d x)}{2 d}-\frac {b \cot ^3(c+d x)}{3 d}-\frac {a \cot ^4(c+d x)}{4 d}+\frac {a \log (\sin (c+d x))}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.40, size = 82, normalized size = 1.09 \[ \frac {a \left (-\cot ^4(c+d x)+2 \cot ^2(c+d x)+4 \log (\tan (c+d x))+4 \log (\cos (c+d x))\right )}{4 d}-\frac {b \cot ^3(c+d x) \, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};-\tan ^2(c+d x)\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^5*(a + b*Tan[c + d*x]),x]

[Out]

-1/3*(b*Cot[c + d*x]^3*Hypergeometric2F1[-3/2, 1, -1/2, -Tan[c + d*x]^2])/d + (a*(2*Cot[c + d*x]^2 - Cot[c + d
*x]^4 + 4*Log[Cos[c + d*x]] + 4*Log[Tan[c + d*x]]))/(4*d)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 100, normalized size = 1.33 \[ \frac {6 \, a \log \left (\frac {\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{4} + 3 \, {\left (4 \, b d x + 3 \, a\right )} \tan \left (d x + c\right )^{4} + 12 \, b \tan \left (d x + c\right )^{3} + 6 \, a \tan \left (d x + c\right )^{2} - 4 \, b \tan \left (d x + c\right ) - 3 \, a}{12 \, d \tan \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/12*(6*a*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^4 + 3*(4*b*d*x + 3*a)*tan(d*x + c)^4 + 12*b*ta
n(d*x + c)^3 + 6*a*tan(d*x + c)^2 - 4*b*tan(d*x + c) - 3*a)/(d*tan(d*x + c)^4)

________________________________________________________________________________________

giac [B]  time = 1.77, size = 169, normalized size = 2.25 \[ -\frac {3 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 8 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 192 \, {\left (d x + c\right )} b + 192 \, a \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) - 192 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 120 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {400 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 120 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 8 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

-1/192*(3*a*tan(1/2*d*x + 1/2*c)^4 - 8*b*tan(1/2*d*x + 1/2*c)^3 - 36*a*tan(1/2*d*x + 1/2*c)^2 - 192*(d*x + c)*
b + 192*a*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 192*a*log(abs(tan(1/2*d*x + 1/2*c))) + 120*b*tan(1/2*d*x + 1/2*c)
+ (400*a*tan(1/2*d*x + 1/2*c)^4 - 120*b*tan(1/2*d*x + 1/2*c)^3 - 36*a*tan(1/2*d*x + 1/2*c)^2 + 8*b*tan(1/2*d*x
 + 1/2*c) + 3*a)/tan(1/2*d*x + 1/2*c)^4)/d

________________________________________________________________________________________

maple [A]  time = 0.31, size = 76, normalized size = 1.01 \[ -\frac {a \left (\cot ^{4}\left (d x +c \right )\right )}{4 d}+\frac {a \left (\cot ^{2}\left (d x +c \right )\right )}{2 d}+\frac {a \ln \left (\sin \left (d x +c \right )\right )}{d}-\frac {b \left (\cot ^{3}\left (d x +c \right )\right )}{3 d}+\frac {b \cot \left (d x +c \right )}{d}+b x +\frac {b c}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^5*(a+b*tan(d*x+c)),x)

[Out]

-1/4*a*cot(d*x+c)^4/d+1/2*a*cot(d*x+c)^2/d+a*ln(sin(d*x+c))/d-1/3*b*cot(d*x+c)^3/d+b*cot(d*x+c)/d+b*x+b*c/d

________________________________________________________________________________________

maxima [A]  time = 0.82, size = 82, normalized size = 1.09 \[ \frac {12 \, {\left (d x + c\right )} b - 6 \, a \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 12 \, a \log \left (\tan \left (d x + c\right )\right ) + \frac {12 \, b \tan \left (d x + c\right )^{3} + 6 \, a \tan \left (d x + c\right )^{2} - 4 \, b \tan \left (d x + c\right ) - 3 \, a}{\tan \left (d x + c\right )^{4}}}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(12*(d*x + c)*b - 6*a*log(tan(d*x + c)^2 + 1) + 12*a*log(tan(d*x + c)) + (12*b*tan(d*x + c)^3 + 6*a*tan(d
*x + c)^2 - 4*b*tan(d*x + c) - 3*a)/tan(d*x + c)^4)/d

________________________________________________________________________________________

mupad [B]  time = 4.11, size = 107, normalized size = 1.43 \[ \frac {a\,\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,\left (\frac {a}{2}-\frac {b\,1{}\mathrm {i}}{2}\right )}{d}-\frac {{\mathrm {cot}\left (c+d\,x\right )}^4\,\left (-b\,{\mathrm {tan}\left (c+d\,x\right )}^3-\frac {a\,{\mathrm {tan}\left (c+d\,x\right )}^2}{2}+\frac {b\,\mathrm {tan}\left (c+d\,x\right )}{3}+\frac {a}{4}\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,\left (\frac {a}{2}+\frac {b\,1{}\mathrm {i}}{2}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^5*(a + b*tan(c + d*x)),x)

[Out]

(a*log(tan(c + d*x)))/d - (log(tan(c + d*x) + 1i)*(a/2 - (b*1i)/2))/d - (cot(c + d*x)^4*(a/4 + (b*tan(c + d*x)
)/3 - (a*tan(c + d*x)^2)/2 - b*tan(c + d*x)^3))/d - (log(tan(c + d*x) - 1i)*(a/2 + (b*1i)/2))/d

________________________________________________________________________________________

sympy [A]  time = 2.10, size = 110, normalized size = 1.47 \[ \begin {cases} \tilde {\infty } a x & \text {for}\: \left (c = 0 \vee c = - d x\right ) \wedge \left (c = - d x \vee d = 0\right ) \\x \left (a + b \tan {\relax (c )}\right ) \cot ^{5}{\relax (c )} & \text {for}\: d = 0 \\- \frac {a \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {a \log {\left (\tan {\left (c + d x \right )} \right )}}{d} + \frac {a}{2 d \tan ^{2}{\left (c + d x \right )}} - \frac {a}{4 d \tan ^{4}{\left (c + d x \right )}} + b x + \frac {b}{d \tan {\left (c + d x \right )}} - \frac {b}{3 d \tan ^{3}{\left (c + d x \right )}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**5*(a+b*tan(d*x+c)),x)

[Out]

Piecewise((zoo*a*x, (Eq(c, 0) | Eq(c, -d*x)) & (Eq(d, 0) | Eq(c, -d*x))), (x*(a + b*tan(c))*cot(c)**5, Eq(d, 0
)), (-a*log(tan(c + d*x)**2 + 1)/(2*d) + a*log(tan(c + d*x))/d + a/(2*d*tan(c + d*x)**2) - a/(4*d*tan(c + d*x)
**4) + b*x + b/(d*tan(c + d*x)) - b/(3*d*tan(c + d*x)**3), True))

________________________________________________________________________________________